CALCULATION OF TEMPERATURE IN THE MOTION
OF A PLANE ANNULAR HEAT SOURCE (IN RELATION
TO THE DIAMOND DRILLING OF GLASS)
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The application of the method of heat sources to the problem of the temperature developing
in a continuous solid during the motion of an annular plane heat source in the latter is pre-
sented, The results are applied to the calculation of the temperature field associated with
the drilling of glass with an annular diamond drill,

A number of technical operations involve the problem of calculating the temperature which arises
under the influence of a moving annular heat source. This applies in particular to the diamond drilling of
glass and other materials with annular drills.

In describing the temperature fields in these and analogous processes two subsidiary problems usually
arise: 1) the determination of the temperature due to an annular plane heat source moving in an infinite
body; 2) the determination of the temperature at the end of a thin rod (tube) comprising two different mate-
rials, one heated at the end, one cooled along the sides, Let us consider the solution of these problems.

A Plane Annular Heat Source in an Infinite Body

Let us suppose that we have an infinite body (Fig.1) with specified thermophysical properties; at an
instant of time T = 0 a plane annular heat source of intensity q; with external and internal radii r, and ry
starts acting in the body, and at the same time starts moving within it at a constant velocity s. The source
acts for a time 7. In order to determine the temperature field in the moving system of coordinates xoyz,
let us first find the temperature 6y due to the action of a stationary instantaneous plane annular heat source,
For this purpose we use an expression describing the temperature field arising from an instantaneous point
heat source:
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Let us integrate (1) from 0 to 27 with respect to yj and from ry to r, with respect to pr. We use the equa-
tions for an instantaneous circular source given in [1] and obtain
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Here Jy(mp), J4(mr,),Jy(mr,)are Bessel functions of the zero and first orders; Io(ppI/Zat) is a Bessel func-
tion with an imaginary argument, If instead of a stationary coordinate system (xy, ¥, Z¢) We take a moving
system (x,y, z) with its origin in the center of the source, moving along the z axis, then z; =z + s(T —T7j);
xo=x and y, =y. Let us substitute the value of the coordinate z, into Eq. 2) and integrate the expression
with respect to 7; over the limits 7; =0to 7; =7
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We thus obtain an equation for calculating the temperature field due to a plane annular moving heat source
at any instant of time 7. For steady heat propagation (r —«) we obtain
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Transforming the integral in the curly brackets [2], we finally obtain an expression for the temperature:
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Fig.2, Set of curves for determining the values
of the following functions: a) Fy (curves 1,2, 3,4
refer to source diameters 25, 20, 17, 12 mm); b)
F,. Units are as follows: s in mm/sec, Fy, F,
and 1/« in cal/em?.sec . °C.

Curves of the function F are presented in Fig.2a
in relation to the velocity of forward motion of the source,
The function Fy; was calculated using the following values
in the equation: r, = 6; 8,5; 10; 12.5 mm; r; = 4.8; 7.3;
8.8; 11.2 mm, where p = ry; s = 0.3-2 mm/sec; A = 0,0023
cal/em -sec - °C; a = 0.0046 cm?/sec.

Fig.1l, Diagram to illustrate the calcula-
tion of the temperature field due to a plane
annular moving heat source, Thin Cooled Rod

Plane Source at the End of a Composite

Let us suppose that a rod of length ! consisting of
two parts I; and I, with different thermophysical proper-
ties lies along the x axis (Fig.3) and has a constant cross-sectional area f, and a perimeter H, A heat
source of intensity g, acts in the plane x = 0, The sides give out heat to the surrounding medium, Let us
write down the equations of heat conduction and the boundary conditions for this system:
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In Eqs. (6) and (7): ¢ = (@H/Afo; 42 = @H/A,f5), where o is the heat-transfer coefficient between the rod and
the surrounding liquid. The foregoing expressions may also be applied to a tube with walls so thin that the
change in temperature across the wall thickness may be neglected. In a tube with thin walls cooled from
within and without, the propagation of heat may to a fair approximation be regarded as linear, and the sys~-
tem may be likened to the continuous thin rod illustrated in Fig,3. For a tube
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Fig.3 Fig.4
Fig, 3. Diagram to illustrate the calculation of temperature
at the end of a composite thin cooled rod due to a plane heat
source, 6in °C,
Fig.4, Diamond drilling of glass (schematic): 1) body of
diamond drill; 2) diamond-carrying layer; 3) glass subject
to machining; m;) working end of drill.

The desired solutions of Egs. (6) and (7) with the specified boundary conditions take the form

8, = A" + By (12)
0, = A"t By (13)
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The dimensionless quantities C and D have the following meanings:

C=l+l/—%2—; D=l—l/—;:i.
1 1

The power indices p, n, u, and k respectively equal
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In order to determine the temperature at the end of the rod, we use the well-known expression
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Differentiating Eq. (12), we obtain
gy = Mty (B, — 4,
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and further
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A curve representing the function F, is given in Fig,2b in relation to the heat-transfer coefficient &. The
function was calculated for values of A; = 0.35 cal/em .sec - °C, A, = 0.11 cal/cm -sec - °C and the source
ring width b = 1.2 mm,

Temperature in the Diamond Drilling of Glass

The foregoing two typical problems enable us to describe the propagation of heat in a number of cases,
particularly in diamond drilling., A simplified representation of the diamond-drilling process is illustrated
in Fig.4. The cooling liquid passes into the gaps between the outer and inner surfaces of the drilland drilled
part, If we remember that, during the processing, the heat is chiefly evolved at the end of thedrill m, (Fig.
4), we may write down the following equation for the tool on the basis of Eq. (14)

0; = g.F>. (15)

In view of the low thermal conductivity of the glass, the heat source at the end of the tool may be re-
garded as a plane annular source moving in an infinite body with respect to the material being drilled. Then
for an external point on the contact area of the object we may write the following on the basis of Eq. (5)

61 = giF;. (16)
Here
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It is considered that the whole work of cutting is converted into heat, We do not know in advance how the
flux ¢ is divided into g; and q,, but we may determine this by comparing the equations for the temperature
at the object/annular drill contact area, based on the conditions applicable to each of the components in-
dividually, Comparing Eqs, (15) and (16) for the temperature of points lying on the diameter d, and then
solving the equations with the two unknowns g; and q,, we obtain
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Hence
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0.427f, \ F, +F,

By way of example we may present the following data, In the drilling of a plate of commercial glass
with an A16M1F12 diamond drill (100% concentration, in one mode the circumferential velocity v = 2.8 m
/sec and the axial force P = 20 kG), P, = 4.5 kG. The area of the working end of the annular drill f, = 0.408
cm?, Let us determine the temperature e arising in this case, From the curves of Fig.2 we obtain F;
= 5.2, ¥y = 4,24, and then by Eq. (17)
4.5.2,8 5.2.4.24

0, = .=~ 170 °C.
0.408.0.427 5.2-}-4.24

Equation (17) may also be used in the solution of other analogous technical problems,
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NOTATION

are the polar coordinates of an instantaneous point heat source placed on a circle of radius
L

are the coordinates of the point under consideration M;

is the intensity of the instantaneous point heat source;

is the intensity of a plane annular instantaneous heat source;

are the thermal conductivity and thermal diffusivity of the material (glass);

is the bulk specific heat;

is the time from the onset of the instantaneous heat pulse;

are the integration variables;

are the current values of the temperature in different parts of the rod 7, and I, in length;
is the width of the source annulus;

are the thermal conductivities of the parts of the rod (tube) I, and I, respectively;

is the heat-transfer coefficient between the rod and the cooling liquid;

is the circumferential (peripheral) force arising in the diamond drilling of glass;

is the rate of rotation of the drill;

is the velocity of the source.
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